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Abstract – Deviations from the average can provide valuable insights about the organization
of natural systems. The present article extends this important principle to the systematic
identification and analysis of singular motifs in complex networks. Six measurements quantifying
different and complementary features of the connectivity around each node of a network were
calculated, and multivariate statistical methods applied to identify singular nodes. The potential of
the presented concepts and methodology was illustrated with respect to different types of complex
real-world networks, namely the US air transportation network, the protein-protein interactions
of the yeast Saccharomyces cerevisiae and the Roget thesaurus networks. The obtained singular
motifs possessed unique functional roles in the networks. Three classic theoretical network models
were also investigated, with the Barabási-Albert model resulting in singular motifs corresponding
to hubs, confirming the potential of the approach. Interestingly, the number of different types of
singular node motifs as well as the number of their instances were found to be considerably higher
in the real-world networks than in any of the benchmark networks.

Copyright c© EPLA, 2009

While uniformity and regularity are important proper-
ties of patterns in nature and science, it is the minor-
ity deviations in such patterns which are often partic-
ularly informative. A prototypical example is the great
importance given by animal perception to variations in
signals, in detriment of constant stimuli. For instance, the
outlines of shapes or objects play a much more impor-
tant role in visual perception than uniform regions (see,
for instance [1]). Similarly, our focus of visual attention
is frequently driven by abrupt cues at the visual periph-
ery (e.g. a dot of contrasting color, a small object move-
ment or flashes). Even during saccadic eye movements
(i.e., abrupt, ballistic gaze displacements), small changes
in the scene can be perceived [2].

(a)E-mail: luciano@if.sc.usp.br

There are many examples of the importance of minority
deviations in other scientific areas, including mathemat-
ics (the importance of extremal values) and physics (e.g.
singularities). In complex networks (e.g. [3,4]), the unifor-
mity of connections is typically expressed with respect
to the number of connections of each node, the so-called
degree. Amongst the most uniformly connected types of
networks are the random networks —also called Erdős-
Rényi (ER) networks [5], characterized by constant prob-
ability of a connection between any pair of nodes. Because
of its uniformity, the connectivity of this type of network
can be well approximated in terms of the average and
standard deviation of their node degrees, which is a
consequence of its concentrated, Gaussian-like, degree
distribution. Despite being understood in depth since the
first half of the 20th century, ER networks play a relatively
minor role as a model of natural phenomena, because it
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is difficult to find natural systems that can be properly
represented by the Poisson-based ER networks.
While global deviation from uniformity was ultimately

the reason behind the success of complex network studies
(e.g. [3]), a good deal of attention has focused on iden-
tifying uniformities in complex networks, such as node
degree distributions (e.g. [6]) and simpler regions [7]. Only
relatively few studies have targeted singularity identifi-
cation in terms of local structure. For instance, Milo
et al. [8] addressed the detection of motifs significantly
deviating from those in random networks (see also [9]),
while Travençolo et al. showed that the nodes with small-
est outward accessibility tend to be at the border of
networks [10].
Singular nodes can be understood as the most non-

regular nodes in the networks. Because of their unique
topological features, they are likely to play special roles
in the networks. Hubs are a typical example of singular
nodes present in many real-world networks [11]. It is
interesting to note that, despite the ubiquity of hubs
in network theory, no formal definition of these entities
exist. If we consider hubs just as the nodes with degree
larger than the majority of nodes in a given network,
even random networks generated by the ER model may
contain hubs as a consequence of random fluctuations. A
possible definition of hubs can be obtained by considering
them as the nodes that are singular in terms of node
degree. In this way, the methodology that is presented
in this article can be applied to determine objectively
hubs in complex networks. More importantly, as we take
into account additional measurements, other types of more
general singular node motifs can also be identified. Indeed,
we found eight types of individual node motifs —indicative
of the relative position of nodes within the network,
rather than of local multiple-node patterns, such as regular
network motifs [8]. These singular node motifs were found
to be characteristic for the analyzed networks.
The methodology proposed in the current article

includes two main steps: i) several measurements [4] of
the local connectivity are obtained for each node; then
ii) singular motifs detection methodologies from multi-
variate statistics and pattern recognition (e.g. [12]) are
applied to identify the nodes exhibiting the greatest
local structure deviations from the whole set of network
vertices. The adopted measurements include a) the
normalized average degree, r(i), b) the coefficient of
variation of the degrees of the immediate neighbors of a
node, cv(i), c) the clustering coefficient, cc(i) [13], d) the
locality index, loc(i), which is an extension of the match-
ing index (e.g. [14]) and takes into account all the
immediate neighbors of each node, instead of individual
edges; e) the hierarchical clustering coefficient of level
two, cc2(i) (e.g. [15]); and f) the normalized node degree,
K(i). Each node is therefore mapped into 6-dimensional

vectors �X, which “live” in the 6-dimensional feature
space, defining distributions of points.
A number of concepts and methods have been developed

that allow the identification of singular motifs in data sets

(e.g. [12]). The methodology proposed and used in the
current article to obtain the singular motifs involves the
following three steps: i) projection of the six-dimensional
vertices feature vectors into two-dimensional (2D) space,
using principal component analysis [16] to remove correla-
tions between measurements; ii) identification of singular
nodes in the 2D space by considering the Parzen windows
method for estimating the probability densities (the singu-
lar nodes correspond to the vertices leading to the smallest
probability densities); and iii) supervised classification of
the singular nodes into categories, according to proximity
in M -dimensional space.
The first step, the projection of the feature vector of

each vertex onto the 2D plane, can be obtained by prin-
cipal component analysis (e.g. [4,12,17]). This method
transforms the data into a new coordinate system (through
a rotation) such that the greatest variances are concen-
trated along the first coordinate axes. To perform this
method, the covariance matrix Σ of the data is estimated
and the eigenvectors corresponding to the largest absolute
eigenvalues are calculated and used to define a linear trans-
formation projecting the cloud of points into a space of
reduced dimensionality (2D in the current case).
The identification of the singularities purely by visual

inspection can produce inaccurate results because of the
form of the distribution of points in the projection. In
the present work, the singular nodes are determined in a
quantitative fashion by considering the probability density
in 2D space as estimated by the non-parametric Parzen
windows approach [18,19]. This method involves adding
a Gaussian function at each data point in 2D space in
order to allow the interpolation of the probability density.
The considered standard deviation of the Gaussian is equal
to σxx = σyy = 0.05. In this way, points that are isolated
from other data points will have small values of probability
as there is no overlap in probabilities. Recall that the
proximity between the points in the 2D space (implying
higher spatial density) reflects the similarity of topological
features of the respective nodes (e.g. [7]). In this work we
consider as singular nodes the w= 20 vertices with the
smallest probabilities.
Having identified the singular nodes, they are orga-

nized into categories sharing structural properties in the
network. This grouping was done by considering k-means,
which is a clustering method used to group objects with
similar features [16]. The clustering is illustrated in fig. 1,
at the 2D scatterplot. In order to be able to define a more
complete description of such categories, it is necessary to
return to the M -dimensional original space of measure-
ments (here: M = 6). The objective is to obtain classi-
fication regions in this space so that unclassified nodes
(from the reference or other networks) can be assigned
to the singular motif categories. Because most network
nodes are not singular, it is important that the singu-
lar motif categories in the M -dimensional space do not
cover that whole space. In other words, the partitioning of
the M -dimensional space involves the identified singular
node motif categories plus the “non-singular” categories.
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Fig. 1: Illustration of the proposed method to identify the
singular motifs. First, the feature vectors of the vertices
are projected onto the two-dimensional space by principal
component analysis. Next, singular nodes are identified in this
space by considering the probability distribution generated by
the Parzen windows approach. These singular nodes are then
grouped into categories by applying k-means clustering (each
marked region on the plane). Finally, the classes of singular
motifs are mapped back into the original M -dimensional
measurement space and grouped according to the Mahalanobis
distance.

This can be done by considering the original feature
vectors of each singular node. Such a backmapping into
the original measurement space defines clusters of singular
motif categories which may exhibit overlap (recall that the
grouping of the singular nodes was performed in the 2D
space). In order to obtain non-overlapping singular motif
regions, we perform a Voronoi expansion by considering
the Mahalanobis distance, which is given by

D(X) =

√
( �X − �µ)TΣ−1( �X − �µ), (1)

where T stands for matrix transposition, �µ is the average
of the feature vectors of each class and Σ is the respec-
tive covariance matrix. The Mahalanobis distance [20],
instead of the Euclidean distance, was adopted because
the distributions of vertices in the original feature can
be skewed and elongated. Recall that the Mahalanobis
Voronoi expansion involves the average vector and covari-
ance matrix of each singular motif category. In order to
spatially constrain the singular motif regions, therefore
accounting for the “non-singular” category (correspond-
ing to the points in the M -dimensional space not covered
by the Voronoi expansion), the Mahalanobis distances are
constrained to values smaller than a threshold d. The cate-
gories which resulted in too close proximities (in the Maha-
lanobis sense) are grouped into a single region. In the end,
this procedure partitions the originalM -dimensional space
into regions for the singular motif categories plus the “non-
singular” region.
Figure 2 presents the projections of the original

measurement spaces (obtained by principal component
analysis) for (a) the US air transportation network,
(b) the yeast protein-protein interaction network, and
(c) for Roget’s thesaurus network. To remove scaling
biases, the six adopted measurements were standardized

(e.g. [12]), which was accomplished by subtracting the
average from each measurement and dividing by the
standard deviation. Each of the two projection axes
corresponds to a linear combination of the six original
measurements. The respective probability density estima-
tions are shown in fig. 2. The singular nodes correspond
to the 20 vertices with the smallest probabilities.
The identified singular nodes were grouped into

classes according to their proximity in the projections.
After mapping these categories back into the original
6-dimensional measurement space, those categories which
were too close to one another were merged (see fig. 1),
resulting in eight final singular motifs, as shown in fig. 3.
Why were just eight different singular motifs found, out
of the many (26 = 64) potential groups? Among several
possible explanations we have that: a) some groups are
absent (due to skewed feature distributions) b) some
groups are present but not included in the top eight
singularities, and c) some features strongly correlate with
each other leading to the merger of potential singular
motifs. For example, if a minimum feature A correlates
with a maximum in feature B (negative correlation),
singular nodes may form a joint group AB. However, if
all features are statistically independent and distributions
are non-skewed, all potential groups of singular nodes
should also occur in the top list. In short, considering
absent singular motifs can provide additional information
about the nature of network connectivity, i.e. a network
does not present singular motifs when its structure is
highly uniform, as we will demonstrate next for the ER
network.
Having obtained the partition of the original six-

dimensional measurement space into the eight outlier
categories plus the “non-outlier” class, it is possible to
categorize all nodes in any given network into these nine
categories. Figure 4 presents the distributions of the
singular motifs in the three real networks and in three
benchmark networks: the random graphs of Erdős and
Rényi (ER) [5], the small-world graphs of Watts and
Strogatz (WS) [13], and scale-free networks of Barabási
and Albert (BA) [6]. We can see that the singular motifs
are more abundant in real networks than in the networks
generated by the benchmark models. Also, the number
of singular motifs is much smaller than the number
of vertices classified as “non-singular”. The networks
generated by the ER and WS models tended not to
produce singular motifs because of the regularity of their
structures. On the other hand, the network constructed
by the BA model contains a significant number of global
relay hubs. Interestingly, these singular motifs turned out
to correspond precisely to hubs with small clustering coef-
ficient. Therefore, the proposed methodology for outlier
detection provided a quantitative and objective way to
identify the hubs as special motifs in the case of the BA
model. The US air transportation network presented local
relay hubs, cluster-tails and tail; the protein-protein inter-
action network global relay hubs, local integrators and
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Fig. 2: The feature space obtained by principal component projections of the six-dimensional measurement vectors of the
networks of (a) air transportation, (b) protein-protein interactions, and (c) Roget’s thesaurus. The respective probability density
functions are shown in (d), (e), and (f). The singular nodes are indicated by arrows.

cluster-tails; while Roget’s thesaurus network included
integrator, community center, cluster-cluster and tail
singular motifs.
Table 1 presents the 20 identified singular nodes in each

real network. In the case of the US air transportation
network, while all airports of class B (local relay hub)
are international, the airports of class C (local integrator)
are regional. The international airports can be understood
as the hubs with values of the clustering coefficient
larger than zero. This structure reflects the importance
of such airports, since they concentrate high traffic. The
airports of class F (cluster-tail) are characterized by large
clustering coefficient and high variation in the degree of
their neighbors, tending to be linked to a hub airport and
an airport with few connections (see fig. 3, class F). For
instance, the airport Dubuque Regional is connected to
the Waterloo Municipal Airport and to Chicago O’Hare
International Airport. The same occurs to the remainder
type-F airports, but exceptionally, the Gregg County
and the Tyler-Pounds Field airports connected to the
Dallas Fort Worth International airport. The airport
Pueblo Memoria, belonging to class H (tail), is a small
airport mostly used for general aviation and served by
just one commercial airline. This airport is linked to the
Colorado Springs Airport, which is connected to seven
airports that share links (cc2 = 1). In this case we have a
configuration where a small airport is connected to a larger
regional airport. Therefore, the obtained singular motifs
corresponded to particular functional types of airports.

In the case of protein-protein interactions, the 20 singu-
lar nodes fall into classes A (global relay hubs), C (local
integrators) and F (tails). The global relay hubs present
a small value of the clustering coefficient. According to
previous studies [21], removal of hub proteins would tend
to be lethal. This trend was only partially observed in
our results. For instance, despite the fact that the protein
P47135 (protein JSN1) is highly connected, it is considered
viable. On the other hand, the protein Q02821 is lethal
and promotes the docking of import substrates to the
nuclear envelope [22]. The protein Q02630 has unknown
viability. Among the 14 proteins considered local inte-
grators, 11 are lethal (only the proteins P53068, P48439
and Q92316 are viable). Particularly, the proteins P38042,
P53068, P53886, Q04601, Q08683 and Q12157 participate
in the anaphase promoting complex/cyclosome which is
involved in cell division [22]. These proteins are centers of
cliques (set of fully connected subgraphs), presenting the
same local structure with connectivity equal to 10 and
clustering coefficient equal to 1. Similarly, the proteins
Q03337, Q03660, Q03784, and Q04183 are components of
the TRAPP II complex, which seems to play a role in
intra-Golgi transport and in meiosis following DNA repli-
cation [22]. The proteins P46964, P48439, and Q92316
also have similar functions, being required for a maxi-
mal enzyme activity. The protein Q06632 is involved
in coupling transcription termination and mRNA 3′-end
formation. Therefore, the local integrators have similar
functions. Despite the fact that such proteins are not hubs,
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Fig. 3: New singular network motifs defined by the singular
nodes identified in the three considered real-world networks.
The singular node is the darkest node in each motif. We named
these singular motifs (A) global relay hub, (B) local relay
hub, (C) local integrator, (D) integrator, (E) community
center, (F) cluster-tail, (G) cluster-cluster, and (H) tail.

they tend to be lethal, which suggests that the connec-
tivity is not the only topological feature fundamentally
associated to lethality of proteins [23]. The fact that the
local integrator singular motifs have high clustering coef-
ficient and high locality index indicates that such proteins
can be found in the middle of communities. The cluster-
tail proteins have small degree, high clustering coefficient,
high normalized average neighboring degree and high coef-
ficient of variation. All these proteins (P36025, P43580,
and P40326) are viable and considered uncharacterized
proteins [22]. They tend to be connected to a hub protein
and to a less well connected protein. Therefore, these
results suggest a relationship between the function and
local singularity structure of proteins.
The Roget’s thesaurus network presents four types of

singular motifs. All these classes are composed of sparsely
connected words with specific local structures. The words
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Fig. 4: The distribution of the singular motifs found in networks
generated by (a) the Erdős-Rényi model, (b) the Watts-
Strogatz model and (c) the Barabási and Albert model; as
well as in real networks, namely (d) the US air transporta-
tion network, (e) the protein-protein interaction of the yeast
S. cerevisiae, and (f) Roget’s thesaurus network. The distribu-
tions for the models were obtained from 100 realization, where
each network was composed of N = 1, 000 nodes with average
degree 〈k〉= 4. NO indicates non-singular nodes and each letter
corresponds to the singular motifs presented in fig. 3.

of classes E (community center) and G (cluster-cluster)
are similar, having small degree, but differing mainly in
the average normalized neighboring degree. The commu-
nity center words tend to be regular structures, present-
ing high clustering coefficient, small normalized average
neighboring degree and a small coefficient of variation.
Moreover, the words “man”, “woman” and “adolescence”
are interconnected belonging to the same community [24].
The words of class D (integrator) can be considered as
internal to the communities, since their clustering coeffi-
cient is larger than zero. For instance, the outlier “resent-
ment” is connected to words associated with hostility, such
as “violence”, “revenge” and “disrespect”. The remaining
words of class E (community center), “passage”, “ingress”,
“egress” and “opening” are related to the same mean-
ing. The cluster-cluster words are characterized by small
degree, large clustering coefficient and hierarchical cluster-
ing coefficient of level two significantly larger than zero. In
this case, the singular nodes of this class are connected
with two words i and j of similar meaning, and the
words connected to i do not have semantic relation to
the neighbors of j. For instance, the outlier “letter” is
connected to the words “writing” and “printing”. While
the former is also connected to words associated with
investigation, as “evidence” and “indication”, the latter
is associated with publishing, as “engraving” and “publi-
cation”. Therefore, the cluster-cluster singular motifs tend
to appear between communities. On the other hand, tails
present degree one and a high clustering coefficient of level
two. Thus, these singular words tend to be specific, being
connected to one word whose neighbors do not have any
association with that outlier word. For instance, the word
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Table 1: The 20 most singular nodes obtained for the US
air transportation network, the protein-protein interaction
network of S. cerevisiae and the network of Roget’s thesaurus,
as well as respective node classifications.

Airports Class

Chicago O’Hare Intl., Dallas Fort Worth Intl.,
Pittsburgh Intl., Lambert-St Louis Intl.,
Charlotte/Douglas Intl., The William B.
Hartsfield Intl., Stapleton Intl., B
Minneapolis-Saint Paul Intl.,
Detroit Metropolitan Wayne County,
Newark Intl., San Francisco Intl.
Dubuque Reg., Tweed New Haven Reg.,
Gregg County, Tyler - Pounds Field Reg., F
Tompkins County Reg., Elmira/Corning Reg.,
Williamson County Reg., Cape Girardeau Reg.
Pueblo Memorial H

Proteins Class

P47135, Q02821, Q02630, P38042 A
P53068, P53886, Q04601, Q08683
Q12157, P46964, P48439, Q92316, C
Q03337, Q03660, Q03784, Q04183, Q06632
P36025, P43580, P40326 F

Words Class

resentment, passage, ingress, opening, egress E
zoology, adolescence, man, woman D
soliloquy, irregularity, substitute, G
letter, absence of intellect, sculpture
prose, musical instr., island, pulpiness, snap H

“prose” is connected to “poetry”, which is connected to
“melody”, “music”, “musician” and “voice”. These neigh-
bors of “poetry” have an association with music, but do
not bear any semantic relation to it.
The extension of the current work to further measure-

ments and different networks is straightforward and
promising. Depending on the considered networks, other
types of singular motifs may be obtained than the eight
classes identified here. Moreover, the proposed method
allows to classify the nodes according to local features
(defined by the considered measurements) and to investi-
gate the relation between the structure and function of
complex networks.
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