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Fifty years ago, John von Neumann compared the architecture of the brain with that of
the computers he invented and which are still in use today. In those days, the
organization of computers was based on concepts of brain organization. Here, we give an
update on current results on the global organization of neural systems. For neural
systems, we outline how the spatial and topological architecture of neuronal and cortical
networks facilitates robustness against failures, fast processing and balanced network
activation. Finally, we discuss mechanisms of self-organization for such architectures.
After all, the organization of the brain might again inspire computer architecture.
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1. Introduction

The relation between the computer and the brain has always been of interest to
scientists and the public alike, from the notion of ‘thinking machines’ and
‘artificial intelligence’ to applying concepts of neuroscience like neural networks
to solve problems in computer science. Also the earliest computers, using the
von Neumann architecture still in use today, used memory and a central
processing unit based on the concepts of brain architecture (von Neumann
1958). Models of artificial neural networks were inspired by the function of
individual neurons as integrators of incoming signals. Detailed models of neural
processing, however, are often limited to single tasks (e.g. pattern recognition)
and one modality (e.g. only visual information). In addition, artificial neural
networks starting with perceptrons (Rosenblatt 1959) are designed as a general
purpose architecture, whereas the architecture of natural neural systems shows a
high specialization according to different tasks and functions. Global models, on
the other hand, often deal with functional circuits (e.g. movement planning)
without a direct link to the local structure of the neural network. Therefore,
much of the complexity of neural processing in terms of combining local and
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global levels as well as integrating information from different domains is largely
missing from current models.

Approximately 50 years ago, John von Neumann—inventor of the current
computer architecture—thought about where computers and the brain are the
same and where they differ (von Neumann 1958). After 50 years of technological
progress, how do the benchmark characteristics differ? The human brain consists
of 1010 neurons or processing units, whereas the Internet, being the largest
computer network, has only millions of processing units. However, the extension
of the Internet to mobile services (pervasive computing) could lead to billions of
processing nodes in the future. The human memory can be estimated from
adjustable synaptic weights of connections between neurons. However, these 1014

synapses/weights are only a first approximation of the hard-wired information
storage as the position of synapses, both absolute on the target neuron and
relative to other synapses, influences signal integration. Computer memories
have reached this level with some systems, such as the machines that store Web
information at Google, storing several petabytes (1 PBZ1015 B; see http://
en.wikipedia.org/wiki/petabyte). However, computer systems are still far away
from processing complex information like the human brain does. In spite of
processing units or memory, the main difference between computers and brains is
their hardware architecture—how they are wired up.

In this article, I present recent results on the topology (architecture) of
complex brain networks. These results are not about standard (artificial) neural
networks that deal with one single task, e.g. face recognition. Rather, I look at
the high-level organization of the brain including modules for different tasks and
different sensory modalities (e.g. sound, vision, touch). Nonetheless, similar
organization (Buzsaki et al. 2004) and processing (Dyhrfjeld-Johnsen et al. 2007)
has been found at the local level of connectivity within modules.
2. Cortical network organization

(a ) Cluster organization

Cortical areas are brain modules which are defined by structural (microscopic)
architecture. Observing the thickness and cell types of the cortical layers, several
cortical areas can be distinguished (Brodmann 1909). Furthermore, areas also
show a functional specialization. Within one area, further subunits (cortical
columns) exist; however, these units will not be covered in this paper as there is
not enough information about their connectivity. Using neuroanatomical
techniques, it can be tested which areas are connected, which means that
projections in one or both directions between the areas do exist. If a fibre
projection between two areas is found, the value ‘1’ is entered in the adjacency
matrix; the value ‘0’ defines absent connections or cases where the existence of
connections was not tested (figure 1a).

Contrary to popular belief, cortical networks are not completely connected, i.e.
not ‘everything is connected to everything else’: only approximately 30% of all
possible connections (arcs) between areas do exist. Instead, highly connected sets
of nodes (clusters) are found, which correspond to functional differentiation of
areas. For example, clusters corresponding to visual, auditory, somatosensory
and fronto-limbic processing were found in the cat cortical connectivity network
Phil. Trans. R. Soc. A (2007)
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Figure 1. (a) Adjacency matrix of the cat connectivity network (55 nodes; 891 directed edges).
Dots represent ‘1’ and white spaces the ‘0’ entries of the adjacency matrix. (b) Macaque cortex (95
nodes; 2402 directed edges).
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(Hilgetag & Kaiser 2004). Furthermore, approximately 20% of the connections
are unidirectional (Felleman & van Essen 1991), i.e. a direct projection from area
A to area B but not vice versa exists. Although some of these connections might
be bidirectional as the reverse direction was not tested, there were several cases
where it was confirmed that projections were unidirectional. Therefore, measures
that worked for directed graphs were used.

Until now, there has not been enough information about connectivity in the
human brain which would allow network analysis (Crick & Jones 1993). However,
several new non-invasive methods including diffusion tensor imaging (Tuch et al.
2005) and resting state networks (Achard et al. 2006) are under development and
might help to define human connectivity in the future. At the moment, however, we
are bound to analyse known connectivity in the cat and the macaque (rhesus
monkey; figure 1b) cortical networks (see also Passingham et al. 2002; Sporns et al.
2004). Both networks exhibit clusters, i.e. areas belonging to a cluster have many
existing connections between them but there are few connections to areas of different
clusters (Young 1993; Scannell et al. 1995). These clusters are also functional and
spatial units. Two connected areas tend to be spatially adjacent on the cortical
surface and tend to have a similar function (e.g. both taking part in visual
processing). Whereas there is a preference for short-length connections to spatially
neighbouring areas for the macaque, approximately 10% of the connections cover a
long distance (R40 mm or above)—sometimes close to the maximum possible
distance (69 mm) between two areas of one hemisphere (Kaiser & Hilgetag 2004b).

Cortical networks show maximal structural and dynamic complexity, which is
thought to be necessary for encoding a maximum number of functional states and
might arise as a response to rich sensory environments (Sporns et al. 2000). Using
methods and concepts of network analysis (Albert & Barabási 2002), we discuss
small-world and scale-free properties as well as spatial network organization of
cortical networks.

(b ) Small-world properties

Many complex networks exhibit properties of small-world networks (Watts &
Strogatz 1998). In these networks, neighbours are better connected than in
comparable Erdös–Rényi random networks (called random networks throughout
Phil. Trans. R. Soc. A (2007)
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the text; Erdös, & Rényi 1960), whereas the average path length remains as low
as in random networks. Formally, the average shortest path (ASP, similar,
though not identical, to characteristic path length [; Watts 1999) of a network
with N nodes is the average number of edges that have to be crossed on the
shortest path from any one node to another,

ASPZ
1

NðNK1Þ
X
i;j

dði; jÞ with isj; ð2:1Þ

where dði; jÞ is the length of the shortest path between nodes i and j.
The neighbourhood connectivity is usually measured by the clustering

coefficient. The clustering coefficient of one node v with kv neighbours is
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where jEðGvÞj is the number of edges in the neighbourhood of v and
kv
2

� �
is the

number of possible edges (Watts 1999). In the following analysis, we use the term
clustering coefficient as the average clustering coefficient for all nodes of a network.

Small-world properties were found on different organizational levels of neural
networks: from the tiny nematode Caenorhabditis elegans with approximately
300 neurons (Watts & Strogatz 1998) to cortical networks of the cat and the
macaque (Hilgetag et al. 2000; Hilgetag & Kaiser 2004). Whereas the clustering
coefficient for the macaque is 49% (16% in random networks), the ASP is
comparably low with 2.2 (2.0 in random networks), i.e. on average, only one or
two intermediate areas are on the shortest path between two areas. Note that a
high clustering coefficient does not necessarily correlate with the existence of
multiple clusters. Indeed, the standard model for generating small-world
networks by rewiring regular networks (Watts & Strogatz 1998) does not lead
to multiple clusters.
3. Robustness and recovery

Compared with technical networks (power grids or communication networks),
the brain is remarkably robust towards damage. On the local level, Parkinson’s
disease in humans becomes apparent only after more than half of the cells in the
responsible brain region are eliminated (Damier et al. 1999). On the global level,
the loss of the whole primary visual cortex (areas 17, 18 and 19) in kittens can be
compensated by another region, the posteromedial supra-sylvian area (Spear
et al. 1988). On the other hand, the removal of a small number of nodes or edges
of the network can lead to a breakdown of functional processing. As functional
deficits are not related to the number or size of removed connections or brain
tissue, it might be the role within the network that makes some elements more
critical than others. Identifying these critical components has applications in
neurosurgery, where important parts of the brain should remain intact even after
the removal of a brain tumour and its surrounding tissue.
Phil. Trans. R. Soc. A (2007)
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Figure 2. (a) Schematic of a network with three clusters showing examples of an intra- (grey
dashed line) and inter-cluster (grey solid line) connection. (b) Edge frequency of the eliminated
edge versus ASP after edge removal (20 generated networks with three clusters, defined inter-
cluster connections and random connectivity within clusters; light-grey, inter-cluster connections;
black, connections within a cluster).
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(a ) Critical connections in neural systems

It was found that the robustness towards edge removal is linked to the high
neighbourhood connectivity and the existence of multiple clusters (Kaiser &
Hilgetag 2004a). For connections within clusters, many alternative pathways of
comparable length do exist once one edge is removed from the cluster (figure 2a).
For edges between clusters, however, alternative pathways of comparable length
are unavailable and removal of such edges should have a larger effect on the
network. The damage to the macaque network was measured as the increase in
the ASP after single edge removal. Among several measures, edge frequency
(approximate measure of edge betweenness) of an edge was the best predictor of
the damage after edge elimination (linear correlation rZ0.8 for macaque). The
edge frequency of an edge counts the number of shortest paths in which the edge
is included.

Furthermore, examining comparable benchmark networks with three clusters,
edges with high edge frequency are the ones between clusters. In addition,
removal of these edges causes the largest damage measured as the increase in
ASP (figure 2b). Therefore, inter-cluster connections are critical for the network.
Concerning random loss of fibre connections, however, in most cases, one of the
many connections within a cluster will be damaged with little effect on the
network. The chances of eliminating the fewer inter-cluster connections are
lower. Therefore, the network is robust to random removal of an edge (Kaiser &
Hilgetag 2004a).
(b ) Node removal behaviour similar to that of scale-free networks

In addition to high neighbourhood clustering, many real-world networks have
properties of scale-free networks (Barabási & Albert 1999). In such networks, the
probability for a node possessing k edges is PðkÞfkKg. Therefore, the degree
distribution—where the degree of a node is the number of its connections—follows
a power law. This often results in highly connected nodes that would be unlikely to
occur in random networks: technical networks such as the World Wide Web that
links between web pages (Huberman & Adamic 1999) and the Internet (Faloutsos
et al. 1999) at the level of connections between domains/autonomous systems. Do
cortical networks, as natural communication networks, share similar features?
Phil. Trans. R. Soc. A (2007)
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Figure 3. ASP after either random (dashed line) or targeted (grey solid line) subsequent node
removal. (a) Macaque cortical network (73 nodes, 835 directed edges). (b) Scale-free benchmark
network with the same number of nodes and edges (lines represent the average values over 50
generated networks and 50 runs each in the case of random node removal).
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In cortical networks, some structures (e.g. evolutionarily older structures such
as the amygdala) are highly connected. Unfortunately, the degree distribution
cannot be tested directly as fewer than 100 nodes are available in the cat and
macaque cortical networks. However, using the node elimination pattern as an
indirect measure, cortical networks were found to be similar to scale-free
benchmark networks (Kaiser et al. 2007b).

In that approach, we tested the effect on the ASP of the macaque cortical
network after subsequently eliminating nodes from the network until all nodes
were removed (Albert et al. 2000). For random elimination, the increase in ASP
was slow and reached a peak for a high fraction of deleted nodes before
shrinking due to network fragmentation (figure 3a). When taking out nodes in a
targeted way ranked by their connectivity (deleting the most highly connected
nodes first), however, increase in ASP was steep and a peak was reached at a
fraction of approximately 35%. The curves for random and targeted node
removal were similar for the benchmark scale-free networks (figure 3b) but not
for generated random or small-world (Watts & Strogatz 1998) networks (Kaiser
et al. 2007b). Therefore, cortical as well as scale-free benchmark systems are
robust to random node elimination, but show a larger increase in ASP after
removing highly connected nodes. Again, as for the edges, only a few nodes are
highly connected and therefore critical so that the probability of selecting them
randomly is low.
4. Processing

(a ) Wiring constraints for processing

For microchips, increasing the length of electric wires increases the energy loss
through heat dissipation. Inspired by these ideas, it was suggested that neural
systems should be optimized to reduce wiring costs as well (Cherniak 1994). In
the brain, energy is consumed for establishing fibre tracts between areas and for
propagating action potentials over these fibres. Thus, the total length of all wires
Phil. Trans. R. Soc. A (2007)
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Figure 4. (a) Original placement of cortical areas. (b) Wiring length optimization leads to a
reduction in total wiring length by 32% of the original length. (c) Placement after optimization for
total wiring length. (Abbreviations can be found at www.cocomac.org; see Kaiser & Hilgetag
(2006) for more information.)
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should be kept as short as possible. This has led to the idea of optimal component
placement, in that modules are arranged in such a way that every rearrangement
of modules would lead to an increase in total wiring length.

It has been proposed for several neural systems—including the C. elegans
neural network and subsets of cortical networks—that components are indeed
optimally placed (Cherniak 1994). This means that all node position
permutations of the network—while connections are unchanged—result in
higher total connection length. Therefore, the placement of nodes is optimized
to minimize the total wiring length. However, using larger datasets than those
used in the original study, we found that a reduction in wiring length by
swapping the position of network nodes was possible.

For the macaque, we analysed wiring length using the spatial three-
dimensional positions of 95 areas and their connectivity (figure 4). The total
wiring length was between the case of only establishing the shortest possible
connections and establishing connections randomly regardless of distance.
A reduction of the wiring length was possible due to the number of long-
distance connections in the original networks (Kaiser & Hilgetag 2004b); some of
them even spanning almost the largest possible distance between areas. Why
would these metabolically expensive connections exist in such large numbers?
Phil. Trans. R. Soc. A (2007)
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We tested the effect of removing all long-distance connections and replacing
them with short-distance connections. Whereas several network measures
improved, the value for the ASP increased when long-distance connections were
unavailable. Retaining a lower ASP has two benefits. First, there are fewer
intermediate areas that might distort the signal. Second, as fewer areas are part of
the shortest paths, the transmission delay along a pathway is reduced. The
propagation of signals over long distances, without any delay imposed by
intermediate nodes, has an effect on synchronization as well: both nearby (directly
connected) areas and faraway areas are able to get a signal at about the same time
and could have synchronous processing (Kaiser & Hilgetag 2006). A low ASP
might also be necessary owing to the properties of neurons. John von Neumann,
taking into account the low processing speed and accuracy of individual neurons,
suggested that neural computation needed to be highly parallel with using a low
number of subsequent processing steps (von Neumann 1958). But having a low
ASP also brings a potential danger: how can it be prevented that information or
activity flows uncontrolled through the entire network?
(b ) Balanced network activation through hierarchical connectivity

Few processing steps enable the rapid transfer of activation patterns through
cortical networks, but this flow could potentially activate the whole brain. Such
large-scale activations in the form of increased activity can be observed in the
human brain during epileptic seizures: approximately 1% of the population is
currently affected by epilepsy. In contrast to computer networks with a
continuous flow of viruses and spam e-mails, the brain has some built-in
mechanisms for preventing large-scale activation.

An essential requirement for the representation of functional patterns in complex
neural networks, such as the mammalian cerebral cortex, is the existence of stable
network activations within a limited critical range. In this range, the activity of
neural populations in the network persists between the extremes of quickly dying
out and activating a large part of the network as during epileptic seizures. The
standardmodelwould be to achieve such a balance byhaving interacting excitatory
and inhibitory neurons.Whereas suchmodels are of great value at the local level of
neural systems, they are less meaningful when trying to understand the global level
of connections between columns, areas or area clusters.

Global corticocortical connectivity (connections between brain areas) in
mammals possesses an intricate, non-random organization. Projections are
arranged in clusters of cortical areas, which are closely linked among each other
but less frequently with areas in other clusters. Such structural clusters broadly
agree with functional cortical subdivisions. This cluster organization is found at
several levels. Neurons within a column, area or area cluster (e.g. visual cortex)
are more frequently linked with each other than with neurons in the rest of the
network (Hilgetag & Kaiser 2004).

Using a basic spreading model without inhibition, we investigated how
functional activations of nodes propagate through such a hierarchically clustered
network (Kaiser et al. 2007a). The hierarchical network consisted of 1000 nodes
made of 10 clusters with 100 nodes each. In addition, each cluster consisted of 10
sub-clusters with 10 nodes each (figure 5a,b). Connections were arranged so that
there were more links within (sub-)clusters than between (sub-)clusters. Starting
Phil. Trans. R. Soc. A (2007)
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Figure 5. (a) The hierarchical network organization ranges from a cluster such as the visual cortex
to a sub-cluster such as V1 to individual nodes being cortical columns. (b) Schematic view of a
hierarchical cluster network with five clusters containing five sub-clusters each. Examples of spread
of activity in (c) random, (d) small-world and (e) hierarchical cluster networks (iZ100, i0Z150),
based on 20 simulations for each network.
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with activating 10% of randomly chosen nodes, they became activated when at
least six directly connected nodes were active. Furthermore, at each time step,
activated nodes could become inactive with a probability of 30%.

The simulations demonstrated that persistent and scalable activation could be
produced in clustered networks, but not in random or small-world networks of the
same size (figure 5c–e). Robust sustained activity also occurredwhen the number of
consecutive activated states of a nodewas limited due to exhaustion. These findings
were consistent for threshold models as well as integrate-and-fire models of nodes,
indicating that the topology rather than the activity model was responsible for
balanced activity. In conclusion, a hierarchical cluster architecturemayprovide the
structural basis for the stable and diverse functional patterns observed in cortical
networks. But how do networks with such properties arise?
Phil. Trans. R. Soc. A (2007)



M. Kaiser3042
5. Design versus self-organization

Neural systems, rather than being designed, evolved over millions of years.
Starting from diffuse homogeneous networks, network clusters evolved when
different tasks had to be implemented. During individual brain development, the
architecture is formed by a combination of genetic blueprint and self-
organization (Striedter 2005).

What are the mechanisms of self-organization during network development? A
possible algorithm for developing spatial networks with long-distance connec-
tions and small-world connectivity is spatial growth (Kaiser & Hilgetag 2004c).
In this approach, the probability of establishing a connection decays with the
spatial (Euclidean) distance, thereby establishing a preference for short-distance
connections. This assumption is reasonable for neural networks as the
concentration of growth factors decays with the distance to the source so that
faraway neurons have a lower probability of detecting the signal and sending a
projection towards the source region of the growth factor. In addition,
anatomical studies have shown that the probability of establishing a connection
decreases with the distance between neurons.

In contrast to previous approaches that generated spatial graphs, the node
positions were not determined before the start of connection establishment.
Instead, starting with one node, a new node was added at each step at a
randomly chosen spatial position. For all existing nodes, a connection between
the new node u and an existing node v was established with probability

Pðu; vÞZbeKadðu;vÞ; ð5:1Þ
where dðu; vÞ was the spatial distance between the node positions, and a and b
were scaling coefficients shaping the connection probability. A new node that did
not manage to establish connections was removed from the network. Node
generation was repeated until the desired number of nodes was established.
Parameter b (‘density’) served to adjust the general probability of edge
formation. The non-negative coefficient a (‘spatial range’) regulated the
dependence of edge formation on the distance to existing nodes. Depending on
the parameters a and b, spatial growth could yield networks similar to small-
world cortical, scale-free highway transportation networks as well as networks in
non-Euclidean spaces like metabolic networks (Kaiser & Hilgetag 2004c).
Specifically, it was possible to generate networks with similar wiring organization
to the macaque cortical network (Kaiser & Hilgetag 2004b). Using different time
domains for connection development, in which several spatial regions of the
network establish connections in partly overlapping time windows, allows the
generation of multiple clusters or communities (Kaiser & Hilgetag 2007).
6. Outlook

Natural neural systems, such as cortical networks of connections between brain
regions, have developed several properties that are desirable for computers as well.
Cortical networks show an innate ability to compensate for and recover from
damage to the network. Whereas removing the few highly connected nodes has a
large effect on the network structure, a random removal of nodes or edges has a
Phil. Trans. R. Soc. A (2007)
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small effect in most of the cases. In addition, the spatial layout of cortical and
neuronal networks exhibiting several long-distance connections ensures few
processing steps and thus a faster response time. Speculating about the future,
these mechanisms for robust and rapid processing might provide new ideas for an
artificial neural network as well as for computer architecture. As the ‘program’ of
the brain is implemented in its wiring organization, the topology of the brainmight
inspire theoretical work in the organization of parallel processing and integration.

Towards these topics, we currently work on three questions. First, to identify
properties for robust processing in the brain. This includes understanding
mechanisms for recovery in neural systems. These mechanisms will then be
applied to computer networks to see whether they can lead to faster recovery
after failure. Second, to investigate epileptic spreading in cortical networks. We
intend to determine how the network structure influences activity or, for the
disease state, seizure spreading in cortical networks. The more general analysis of
spreading in networks could give useful insights into how to prevent virus
spreading in communication networks. Finally, to find principles that guide the
development of neural networks over time. By looking at general constraints for
network development such as space, resources for connection establishment and
maintenance or global performance of a network, the reasons for normal and
disturbed network development can be assessed. Ideally, this knowledge might
lead to artificial neural networks with brain-like topology as well as processing.

In conclusion, we hope that future advances in our understanding of neural
systems might (again) inspire solutions to problems in computer systems.
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