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Abstract We report a morphology-based approach for
the automatic identification of outlier neurons, as well
as its application to the NeuroMorpho.org database,
with more than 5,000 neurons. Each neuron in a given
analysis is represented by a feature vector composed of
20 measurements, which are then projected into a two-
dimensional space by applying principal component
analysis. Bivariate kernel density estimation is then
used to obtain the probability distribution for the group
of cells, so that the cells with highest probabilities are
understood as archetypes while those with the smallest
probabilities are classified as outliers. The potential of
the methodology is illustrated in several cases involving
uniform cell types as well as cell types for specific ani-
mal species. The results provide insights regarding the
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distribution of cells, yielding single and multi-variate
clusters, and they suggest that outlier cells tend to be
more planar and tortuous. The proposed methodology
can be used in several situations involving one or more
categories of cells, as well as for detection of new
categories and possible artifacts.

Keywords neuromorphometry · Archetypes ·
Outliers · NeuroMorpho.org · Neuroscience

Introduction

Developments in neuroscience during the last decades
have mainly focused on electrophysiological and func-
tional recordings such as EEG and fMRI and relatively
little attention has been given to the role of neuronal
morphology for behavioral characteristics of an organ-
ism. For a long time, when eletrophysiology was the
main tool of neuronal data acquisition, the neuroscien-
tific interest was focused on describing a mature system
based on its functional properties, which are mostly
accounted for by the respective synaptic connections
and respective strengths (Stepanyants and Chklovskii
2005; Kaiser and Hilgetag 2006). However, such a
general connectivity follows the geometry of neu-
rons as well as their sizes and positions (Stepanyants
et al. 2002; Sporns et al. 2004). This fact implies that
the full understanding of the nervous system’s or-
ganization and behavior depends critically on these
three geometrical elements (size, position, and shape),
and several related works have been reported recently
(Costa et al. 2002; Stepanyants and Chklovskii 2005;
Kaiser et al. 2009). The comprehensive investigation
of the relationship between neuronal geometry, con-
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nectivity, and function was also constrained by the
lack of experimental data and powerful concepts and
methods for the respective characterization. Ramon y
Cajal (Cajal 1989) was one of the first to systematically
investigate neuronal shape and subsequent works stud-
ied the electrophysiology of nerve cells and chemical
transmission of nerve impulses (Loewi 1921, 1955).
Regarding the neuroanatomical approach, there was
a trend of focusing on long-distance connectivity by
techniques such as those of Nissl and Marchi, pre-
cursors of Cajal. More recently, we have witnessed a
surge of interest in neuronal morphology, including
Automated Sholl Analysis (Sholl 1953), fractal dimen-
sion characterization (Montague and Friedlander 1991;
Binzegger et al. 2005), influence area analysis (Toris
et al. 1995), and dendrogram representation (Poznanski
1992). The growing importance of neuromorphology is
further substantiated by the fact that it has become a
very important starting point for reference programs
like Neuron (www.neuron.yale.edu/neuron) and Neu-
roconstruct (www.neuroconstruct.org) (Gleeson et al.
2007).

In a series of seminal works, McGhee (2006) intro-
duced the concept of biological shape space, where
different measures are applied to neurons in order
to represent the cells’ features quantitatively (feature
vector of a cell). Each feature vector corresponds to a
point in the morphological space, but not every point
in this space corresponds to an existing shape—i.e. a
biologically viable one. The morphological space is thus
split into viable and impracticable geometrical shapes.
Further restrictions of this space have been identified
by McGhee based on functionality, development, and
phylogenetics. The remaining subset corresponds to the
biological shapes found in nature. Costa et al. (2010)
used a generic model of neuronal shape to estimate
the subspace of geometrically viable neurons. By using
the data available in the NeuroMorpho.org database,
the subspace of real neurons could be approximated
and was found to occupy a relatively small portion of
the geometrically viable subspace. This suggests that in
addition to geometrical restrictions, several biological
constraints determine the shape of real neurons. To
better understand what these biological constraints are,
we identify both prototypical and outlier neurons in
the morphological space. This is done by noticing that
neurons with similar geometrical properties lie close
to each other in morphological space. Many cells with
similar properties—usually well-defined neuronal cell
categories—give rise to dense clusters (Costa et al.
2010). The most central points of a cluster have features
most similar to other members of the cluster and can
thus be seen as archetypes; those at the border of the

respective cluster will be termed outliers. Differences
between typical archetypes and deviating outlier cells
can provide indications of biological limitations on
geometry.

Improvements on techniques of visualization, acqui-
sition, and sharing of data allowed the development
of automatic methods to classify neurons according to
their morphological features (Costa and Velte 1999;
Cook 1998; Costa et al. 2002; Schierwagen 2008; Wen
and Chklovskii 2008). We previously developed and
applied a methodology in order to automatically iden-
tify outlier nodes in complex networks (Echtermeyer
et al. 2011; Costa et al. 2009; Echtermeyer et al. 2011),
which we adapted to analyze neuronal features.1 The
method is based on multivariate statistics and con-
cepts of pattern recognition, which operate on feature
vectors of each network node. When analyzing com-
plex networks, feature vectors contain measurements
of a node’s local topology, such as degree and clus-
tering coefficient. Instead of these network features,
here we use morphological features of neurons. The
corresponding vectors are then projected into a lower
dimensional space (using Principal Component Analy-
sis) (Härdle and Simar 2007) to create a density map
(using a bivariate kernel density estimator) (Botev et al.
2010) that reflects the point distribution in the PCA-
plane. Regions of high and low density then indicate
archetypes and outliers in morphospace, respectively.

Archetype cells are interesting because they can
serve as a “blueprint” for a particular cell-type. Iden-
tifying outliers could not only be useful for artifact
detection, in the sense that a cell that has been im-
properly sampled appears as an outlier, but outlier
neurons further provide insights about the most ex-
treme viable neuronal shapes, since they mark corre-
sponding boundaries. The proposed algorithm could be
applied for diagnosis. As an example, we could apply
the method for measurements of cells extracted from a
tissue, classifying them as healthy or not. Additionally,
the method fosters understanding of which features
cause a neuron to be an outlier. In the present work,
we therefore identify both archetypes and outliers for
neuronal cells in the NeuroMorpho.org database. Two
types of experiments are reported. First, we consider
four cell types irrespective of species, laboratory or
brain region. Then, we investigate six cell types respec-
tive to a specific species.

The following section starts with the presentation of
the NeuroMorpho.org database, followed by a descrip-

1The software DONE (Detection of Outlier NEurons) is an
implementation for MATLAB that is available on our web-site
(http://www.biological-networks.org/p/outliers/).

http://www.neuron.yale.edu/neuron
http://www.neuroconstruct.org
http://www.biological-networks.org/p/outliers/
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tion of the available morphological measurements and
the explanation of the analysis methods used. Results
obtained using data from all neuronal cells as well as
insights from the group-wise analysis follow. Finally, we
discuss and summarize our findings.

Materials and Methods

The NeuroMorpho.org Database

The NeuroMorpho.org database is a repository of digi-
tally reconstructed neurons that have been made avail-
able by neuroscience laboratories around the world.
Publicly available online, this database is intended for
research in neuroscience, such as visualization, analysis,
and modeling of neuronal cells. When the NeuroMor-
pho.org (Alpha) was released on 1st August 2006, data
of 932 neurons were provided; at the time of access
(9th March 2011), the database already contained mea-
surements of 5,673 cells according the pie-charts shown
in Fig. 1. It should be noted that some bias in such
a database may arise as neuroscientists may choose
neurons that can be more readily identified. Even if
we were able to find out if each cell is healthy or not
from the respective literature, there would be no means
to identify abnormal cells coming from the normal
tissues. The fact that our analysis does not distinguish
between these categories allow its potential application
for identifying potentially abnormal cells among the
outliers. In other words, the universe considered for the
neurons are all possible cells found in living animals.

Data-sets contain original and standardized files of
the morphological reconstruction, general information

of each neuron, such as cell type, region, species,
classes, laboratory, researcher, age scale, staining and
reconstruction methods, magnification, visualizations
in 2D and 3D, as well as related papers, references, and
numerical data related to the geometrical parameters
of neuronal shape (Scorcioni et al. 2008). The database
is maintained by the Computational Neuroanatomy
Group (Krasnow Institute for Advanced Study, George
Mason University) (Ascoli 2002; Ascoli et al. 2007).
The NeuroMorpho.org project is linked to the Neuro-
science Information Framework (NIF) (Halavi et al.
2008).

Digital reconstructions, from which the measure-
ments are acquired, represent the morphology of neu-
ronal cells as a series of points along the neurites with
their positions, radius, connectivity, and process type
(e.g. soma, dendrite, and axon). The reconstruction
process involves a microscope connected to a computer,
which combines captured images into virtual represen-
tation of axonal and dendritic processes, which are then
traced (Donohue and Ascoli 2010). Indeed, this tech-
nique is time consuming and implies distortions (e.g.
loss of focus, mechanical shear and crushing of imaged
tissue, specular reflections, among others). Therefore,
many studies of automatic data collection have been de-
veloped to overcome bias and errors (Srinivasan et al.
2007; Lu et al. 2009; Donohue and Ascoli 2010).

Measurements

The NeuroMorpho.org repository provides a large set
of measurements (or variables) already extracted from
each neuronal cell. Measurements include the soma
surface area (S), number of stems (NS), number of

Fig. 1 Organization of cells
in the NeuroMorpho.org
database. Pie-charts show the
percentage of cells classified
according to a animal species,
b brain region, c cell type, and
d research group. Data from
9th March 2011
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bifurcations (Nb ), number of branches (Nbc), over-
all width (W), overall height (H), overall depth (D),
average diameter (d), total length (L), total surface
area (A), total volume (V), the maximum Euclidean
distance between the soma and each of the nodes (Ed),
the maximum arc length distance between the soma and
each of the nodes (Pd), maximum branch order (Ob ),
average contraction—i.e. the maximum of the ratios
between the Euclidean distance and the respective arc
length distance (C), the total number of compartments
in the neuron (F), and the average Rall’s ratio—
i.e. the ratio between the sum of the diameters of
the daughter compartment and the diameter of the
respective parent compartment (R). Another consid-
ered feature is the partition asymmetry (Ps). Given
a node, the number of tips n1 and n2 of each of its
two subtrees are determined and the partition asym-
metry is then calculated as Ps = |n1 − n2|/(n1 + n2 −
2). The last two measurements adopted in this work
correspond to the average local (αl) and remote (αr)
bifurcation angles. The former corresponds to the angle
between two adjacent compartments. The latter is the
angle between a bifurcation and the tips of the two
respective daughter branches. More information about
these measurements can be found in Ascoli (2002) and
Costa et al. (2010). The respective statistics of these
measurements can be found in Table 1, where variables
related to size, such as volume and surface, are those
with the largest coefficient of variation. To avoid size
effects in our results, the variables S, W, H, D, d, L,
A, V, Ed and Pd were normalized by [1/3(W + H +

D)]ν , where ν is the exponent that makes the variable
dimensionless.

For each neuron, the 20 variables mentioned above
yield its feature vector "w of size M = 20 that works as a
morphological descriptor for the neuron. Each neuron
is thus represented by a vector in M-dimensional mor-
phospace. The morphospace has too many dimensions
for direct visual inspection, which is why we apply prin-
cipal component analysis (PCA) to these data (Härdle
and Simar 2007), which yields a low-dimensional (in
this work, two-dimensions) representation approximat-
ing the morphospace. In the PCA method, the number
of components required to represent the whole dataset
with minimal loss of information depends on the ex-
plained variance v, which is given by

v(d) = 100 ×
∑d

i=1 λi∑M
i=1 λi

, (1)

where d is the reduced dimension, and λi is the i-th
eigenvalue of the covariance matrix. We are assuming
that the eigenvalues are sorted in deceasing order, i.e.
λ1 ≥ λ2 ≥ · · · ≥ λM. Although the reported method can
be straightforwardly extended to any value of d, all
the results presented here correspond to d = 2. It is
important to note that the higher the value of d, the
higher should be the number of used samples in order
to obtain a good estimate of the probability density
described in Section “Outlier and Archetype Detec-
tion”. In our experiments, the first two components

Table 1 Average, µ, and
standard deviation, σ ,
of the 20 measurements of
the overall data of the
NeuroMorpho.org repository

The last column corresponds
to the coefficient of variation

Measurement µ σ σ/µ

Soma surface—S (µm2) 1,227.40 1,982.65 1.62
Number of stems—Ns 5.43 3.17 0.58
Number of bifurcations—Nb 46.52 96.87 2.08
Number of branches—Nbc 103.12 194.50 1.89
Width—W (µm) 365.00 388.30 1.06
Height—H (µm) 381.19 327.76 0.86
Depth—D (µm) 119.87 208.11 1.74
Diameter—d (µm) 1.13 0.80 0.71
Total length—L (µm) 6,110.45 11,216.35 1.84
Area—A (µm2) 14,577.62 34,019.79 2.33
Volume—V (µm3) 7,972.27 72,513.86 9.10
Euclidean distance—Ed (µm) 386.71 364.70 0.94
Path distance—Pd (µm) 589.79 1,029.01 1.74
Branch order—Ob 8.20 8.12 0.99
Contraction—C 0.87 0.07 0.08
Number of compartments—F 2,060.29 5,177.73 2.51
Partition asymmetry—Ps 0.47 0.12 0.25
Rall’s ratio—R 1.50 0.46 0.31
Local bifurcation angle—αl (◦) 64.88 16.50 0.25
Remote bifurcation angle—αr (◦) 56.52 16.10 0.28
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Fig. 2 Probability
distribution estimated for
ganglion cells of mouse. a The
critical probability defines the
contour outside which all cells
are classified as outliers. Five
equaly spaced regions divide
the remaining 2D space, and
the archetype cells are
located at the smallest region,
where the highest
probabilities are found.
b Total variance that can be
explained given by Eq. 1 as a
function of the number of
dimensions d. c–d Average
values of Nb and A as a
function of the region id
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are sufficient to represent on average 43% of the total
variance. Despite some information is lost by reducing
20 to 2 dimensions, the most relevant outliers would still
have high chances of being identified in the projected
space.

Outlier and Archetype Detection

The neuronal projections in 2D space generated by
PCA is used to estimate a probability distribution of
finding a neuronal cell in a particular point of this space.
This is done by using a bivariate kernel density estima-
tor (Botev et al. 2010). The critical probability below
which all cells are classified as outliers was estimated
by using the procedure described by Echtermeyer et al.
(2011). To illustrate how our method works, we show
the results obtained for ganglion cells of a mouse in
Fig. 2. Figure 2a shows the 2D probability distribution
estimated over the space defined by the first two prin-
cipal components. Figure 2b shows the total variance
depending on the number of dimensions d where the
first two axes explain about 41% of the total variance.

In Fig. 2a we also show the contour defined by the
critical probability. The remaining space is divided into
five equally spaced regions (regarding the probability
values), where the most inner one, containing higher
values of probability, is related to the archetype cells.
Each region receives an id from 1 to 6. By study-

ing how the variables change from the region with
id 1 to the region with id 6, we can infer the main
differences between archetype and outlier cells. These
differences can be identified by considering the Pearson
correlation coefficient (ρ) between average value of
a given variable for all cells inside the same region,
and the region id. For instance, variables with corre-
lation near zero, do not show any significant change
from archetype to outlier region. On the other hand,
variables that present correlation near to ±1, such as
those shown in Fig. 2c and d, are good indicators for
main differences between these cells. The statistical
significance of such differences can be estimated by
using the Kolmogorov-Smirnov test (Eadie et al. 1971)
to compare the distributions for archetypes and out-
liers. The null hypothesis is that a given measurement
comes from the same continuous distributions for both
archetypes and outliers. This hypothesis was rejected
at the 5% significance level for all results discussed in
this paper.

Results and Discussion

In this section we present the main results obtained
from ten different experiments in which we consider
different sets of cells as input for the outlier detection.
These experiments are divided into two main groups:
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Table 2 Organization of all ten experiments performed in this
work

Experiment Description of the data Number of cells
Cell types
1 Unigromerular prejection 233

neurons
2 Medium spiny cells 239
3 Ganglion cells 245
4 Pyramidal cells 3,490
Specif ic types

Pyramidal cells
5 Human 2,132
6 Monkey 344
7 Mouse 949
8 Rat 1,694
Ganglion cells
9 Mouse 181
10 Salamander 64

cell types and specif ic type. In the former, we consider
all cells of the same type in each experiment. In the
second case we consider a specific type of cell of a given
animal in each experiment. Details are summarized in
Table 2.

Cell Types

In this analysis, we fixed the type of the considered
cells and allowed the other parameters—like research
group, animal species, and brain region—to change.
Such an approach can be useful to investigate how the
neuronal morphology changes along different species
or along different brain regions. In addition, it is useful
to see how the adopted procedure by each research-
group affects the final measurements. We chose the
four largest classes of cell types available in the
NeuroMorpho.org database: uniglomerular projection,
medium spiny, ganglion, and pyramidal cells. Figure 3
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Fig. 3 Outliers detection for different cell types. The f irst column
corresponds to the 2D PCA space. The second column is the esti-
mated probability density and the regions in which the 2D space
was divided. The number of cells inside each region is shown in

the third column. Examples of archetype (the most probable cell)
and outlier (the least probable cell) are shown in forth and fifth
columns, respectively
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summarizes the results obtained in this experiment. The
first column corresponds to the PCA projection of all
cells (detected outliers marked red). The percentage
of the total variability explained by the two PCA axes
is also provided in the first column. The probability
distribution of the 2D PCA space as well as the five
contours in which this space was divided are shown in
the second column. Third column of Fig. 3 gives the
number of cells inside each region, while the fourth and
fifth column show a typical archetype and outlier cell,
respectively.

The first cell type considered was uniglomerular
projection neurons. In the NeuroMorpho.org database,
there are 233 cells of this type and we identified 26%
of them as outliers. The emergence of a bimodal proba-
bility distribution, as shown in Fig. 3b, could not be ex-
plained by any simple characteristic, since all cells were
obtained by the same research group from the same
brain region of Drosophila. There are cells from two
different ages, embryonic and larval, but this difference
is not enough to explain the bimodal distribution, since
we found embryonic and larval cells in both top and
bottom peaks. We identified that the variables related
to size and number of bifurcations were those that had
the largest changes from archetypes to outliers cells.
For instance, the Pearson correlation between the total
length L and the region id, and between the number
of bifurcations Nb and the region id are ρ = 0.93 and
ρ = 0.91, respectively.

The second class concerns the medium spiny cells,
which were obtained by the group Smith from adult
animals of the Long Evans Rat species. As can be seen
in Fig. 3g, the probability distribution is also bimodal
and we found that the only difference between neurons
located at the left and right peaks seems to be the date
when the neurons were deposited. While the neurons
at left were traced on 1st December 2007, the neurons
at right were traced on 22nd February 2008. These
differences are interesting because they suggest other
possible sources of significant morphological variation,
such as distinct individuals, or could also be an indica-
tion of cell type subgroups. For this type of cells, we
identified 47 neurons as outliers, which correspond to
20% of the total of 239 medium spiny cells. When we
looked at the variables changing from the archetypes
to outliers, we also found the most relevant variables
from archetypes to outliers to be the size and number
of bifurcations. However, contrary to what happened
in the previous case, for these cells, we observed a
densification process, i.e. the linear variables related
to size, such as height H and depth D are negatively
correlated with the region id (ρ = −0.85 and ρ = −0.8,
respectively). On the other hand, there is a strong

positive correlation of 0.93 between total length L and
the region id. The outliers thus tend to be longer than
the archetypes in a smaller region.

We also analyzed the 245 ganglion cells of the data-
base and identified 20% of them as outliers. In ad-
dition, the probability distribution is described by a
single unimodal distribution (see Fig. 3l) even though
we have cells from two different species obtained by
two different research groups. These results indicate
a consistency of the technique adopted by these two
groups, which makes the data reliable for further in-
vestigations. Our results show that the main differences
between archetype and outlier ganglion cells concern
the soma surface S and the average contraction C,
whose correlations with the region id are ρ = −0.85 and
ρ = −0.9, respectively. The last result indicates that the
outliers’ branches tend to be more tortuous than those
observed in the archetype cells.

Finally, the largest class of cell type is that of pyra-
midal cells containing 3,490 neurons from which 547
(16%) were identified as outliers. These cells were ob-
tained by several different groups, from three different
regions (amygdala, cerebral cortex, and hippocampus)
and from five different animal species (cat, human,
monkey, mouse, and rat). Also in this case, a uni-
modal distribution was found (Fig. 3q) and the mea-
surements related to size, such as volume V and soma
surface S were the most relevant to discriminate be-
tween archetype and outlier cells.

Specific Type

In this section, we focus on the cells belonging to the
classes pyramidal and ganglion cells. For the first class,
we considered four different animal species, human,
monkey, mouse, and rat, while for ganglions we an-
alyzed cells from mouse and salamander. The main
results are shown in Figs. 4 and 5.

Pyramidal Cells

When we analyzed the 2,132 pyramidal cells of human
obtained by three different groups, we found that 24%
of them were classified as outliers. Moreover, a single
unimodal distribution was able to describe the diversity
of topologies observed in the database. Among the
variables that change significantly from archetypes to
outliers, we identified that the most relevant were the
number of bifurcations Nb and the partition asymme-
try Ps. The first variable has a negative correlation (ρ =
−0.93) with the region id, indicating that the outliers
are less bifurcated than the archetypes. On the other
hand, the partition asymmetry has a positive correlation
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(ρ = 0.94), showing that archetypes are more symmet-
ric than outlier cells.

We also found a bimodal distribution for pyramidal
cells of monkeys. On the left peak, we only observed
cells obtained by the research group Lewis from the
specie Rhesus Monkey, which were Lucifer yellow-
stained. However, on the right peak, we found cells
from both groups Lewis and WearneHof from Rhesus
Monkey. In addition, the cells at this peak were ob-
tained by two different staining methods, Golgi and
Lucifer yellow. We also found that these two peaks are
distinct by the thickness of slice in which the cells were
obtained. While the left peak contains only cells with
thickness of slice of 90µm, 80% of cells in the right peak
have thickness of 300 or 400µm. The main differences
observed between archetypes and outliers were related
to the number of stems and contraction, whose corre-
lations are ρ = −0.91 and ρ = −0.88, respectively. On
the other hand, we found that the distances Ed and Pd

are positively correlated with the region id (ρ = 0.88
and ρ = 0.89 respectively).

Considering mouse cells, for which we have 949
pyramidal samples, about twenty percent of them were
identified as outliers and the 2D PCA space also
showed a bimodal distribution. On the left side, we
have a more elongated peak, in which we found cells
from the group Yuste. In the right peak, cells from both
DeFelipe and Luebke groups were found. Differently
from the previous case, no significant changes were
observed in the variables from archetypes to outliers
mouse pyramidal cells.

Rat was the last species considered. From the total of
586 pyramidal cells, we found that 24% of them were
classified as outliers. Also here, a bimodal distribution
was found. There is a weak trend of cells located at
the right peak coming from the same research group
(Smith) and from the sub species Long Evans Rat. The
remaining 2D space is equally filled by cells from 16
different groups and four different sub species. In this
case, we found the most relevant differences between
archetypes and outliers are their volume V (Pearson
correlation coefficient ρ = 0.97) and number of bifur-
cations Nb (ρ = 0.95), indicating that outlier cells are
longer and more bifurcated than archetypes.

It is interesting to observe the opposite behavior of
Nb when human or rat cells are considered. While for
the former, the number of bifurcations decreases from
archetypes to outliers, it increases for the latter.

Ganglion Cells

The database contains 181 ganglion cells of mouse
that were obtained by the group Chalupa. Seven-

teen percent of these cells were classified as outliers.
Our results also indicate that several measurements
change significantly from archetypes to outliers. Area
(Pearson correlation coefficient ρ = −0.97), diameter
(ρ = −0.94) and contraction (ρ = −0.98) tend to de-
crease in outlier cells, while number of bifurcation (ρ =
0.98) and bifurcation angle remote (ρ = 0.95) tend to
increase.

In the last experiment, a total of 64 ganglion cells of
salamander traced by the group Miller were considered.
Our results indicate that about 22% were classified as
outliers. We noted that in this case, the main differences
between archetypes and outliers concern the number
of bifurcations and diameter, which tend to increase
in outlier cells. The correlation coefficients for these
measurements were 0.89 and 0.93, respectively.

Although the behavior of variable Nb seems to be
the same for outlier cells of both mouse and salaman-
der, this is not true for the average diameter. As we
can see, outliers of ganglion cells of mouse tend to be
thinner than archetypes, while the diameter of outlier
cells is greater than that observed in archetypes for
salamander cells.

Concluding Remarks

The morphology of neurons provides an important
aspect for their classification, function, and patterns
of connectivity. Due to the large variety of neuronal
shapes it is not straightforward to identify archetype
and exceptional cells. In this work we analyzed mor-
phological measurements provided by the NeuroMor-
pho.org database and identified archetype as well as
outlier cells.

The technique applied in this paper estimates a prob-
ability density function over combinations of morpho-
logical features, which is then used to identify cells with
typical and unusual properties. Apart from cells with
high and low probability, we divided the morphometric
space into regions of similar densities. This allowed
us to characterize cells in the transition area between
archetypes and outliers. To our best knowledge, this is
the first work systematically addressing the automatic
identification and characterization of outlier neuronal
cells according to their morphological shapes. From the
ten different experiments performed, we found that of-
ten the probability distribution on the 2D PCA space is
given by a bimodal distribution, in which the peaks can
be related to different animal species, different research
groups, different individuals or even the presence of so
far unidentified sub-groups of certain cell-types.
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Fig. 6 Relevant differences between archetypes and outliers.
Each column corresponds to a given measurement, while the
rows indicate different experiments for which the Pearson cor-
relation coefficients between measurements and the region id
were calculated. In addition, all cases in which the absolute
correlation is smaller than 0.75 are shown in white. For instance,
from the ten different experiments, a positive correlation was

observed between the measurement number of bifurcations and
the region id in seven cases. Two experiments yielded a negative
correlation, while no significant correlation was observed in just
one of the experiments. The measurements along the x-axis were
ordered according to increasing values of total correlations (i.e.
the sum of the correlations along each column)

To investigate the differences between archetypes
and outliers, we observed how the variables change
from the region with id 1 to the region with id 6.
The Pearson correlation coefficient between the aver-
age of each variable and the region id was obtained
in ten different experiments, as shown in Fig. 6. It
is clear that the variables number of bifurcations and
branch order Ob are those which presented positive
correlation in most analyses, indicating that, in general,
the outliers have more branches than archetypes. On
the other hand, depth D and contraction C are those
which presented negative correlation in most analyses.
Compared to archetypes, outliers tend to be planar
with tortuous branches. Moreover, all measurements
presented highly positive correlation in at least one
experiment, while some of them never presented highly
negative correlation.

Building on our results, future works could con-
tribute to the knowledge regarding the relationship
between the function and shape of neuronal cells. Ulti-
mately, a joint investigation of geometrical, functional,
and phylogenetic factors involved in the differentiation
process could help in understanding important issues,
such as evolution of the nervous system or diseases
related to morphological anomalies. Also, some of the

outliers could correspond to normal neurons affected
by microscope type and calibration, laboratory of ori-
gin, scaling errors, among other artifacts. In fact, the
methodology proposed in the current work can also
help experts in specific areas to check for such effects.
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