

A Tutorial in Connectome Analysis (I): Topological and Spatial Features of Brain Networks

Dr Marcus Kaiser

School of Computing

Science /

Institute of Neuroscience

Newcastle University

United Kingdom

WCU Dept of Brain & Cognitive

Sciences

Seoul National University

South Korea

http://bcs.snu.ac.kr/

http://www.biological-networks.org

Outline

- What are neural networks?
- Introduction to network analysis
- How can the fibre tract network structure be examined?

Topological network organisation

What are neural networks?

Levels of connectivity

Axons between neurons

Links between cortical columns

Fibre tracts between brain areas

Types of connectivity

- Structural / Anatomical (connection):
 two regions are connected by a fibre tract
- Functional (correlation):
 two regions are active at the same time
- Effective (causation): region A modulates activity in region B

Cortical networks

Dorsal and ventral visual pathway

Visual system

Introduction to network analysis

Network Science

Rapidly expanding field:

Watts & Strogatz, *Nature* (June 1998) cited 4,000+ times Barabasi & Albert, *Science* (October 1999) cited 4,000+ times

Modelling of SARS spreading over the airline network (Hufnagel, *PNAS*, 2004)

Identity and Search in Social Networks (Watts et al., *Science*, 2002)

The Large-Scale Organization of Metabolic Networks. (Jeong et al., *Nature*, 2000)

First textbook on brain connectivity (Sporns, 'Networks of the Brain', MIT Press, October 2010)

Origin of graph theory: Leonhard Euler, 1736

Bridges over the river Pregel in Königsberg (now Kaliningrad) Euler tour: path that visits each edge and returns to the origin

Graphs

- Graph: set of nodes and edges (non-directed)
 G = (V,E)
- Set of nodes: V (singular: vertex; plural: vertices)
- Set of edges: E ⊆ V x V
- E.g., V={v1,v2,v3,v4},
 E={(v1,v2), (v1,v3), (v2,v3), (v3,v4)}

Directed graphs (Digraphs)

- Graph: set of nodes and arcs (directed)
- Set of nodes (vertices): V
- Set of edges: E ⊆ V x V, the order matters
- E.g., V={v1,v2,v3,v4},
 E={(v1,v2), (v1,v3), (v2,v3), (v3,v4), (v4,v1)}

Graphs and Networks

In theory (mathematics)
Graph: G=(V,E)

Network: N=(G, s, t, c) defined by graph G with source s, sink t, and edge capacity c

(examples: electricity/power grid, water flow, metabolic flux)

In reality (CS, engineering, economics, life and social sciences): term network used throughout (as in this course)

Nodes in graphs

- Isolated nodes
- Degree of a node
- Connected graph
- Average degree of a graph

- Isolated node: v5
- Degree of a node: d(v1)=2, d(v4)=1
- Average degree of a graph:D = (2+2+2+1+0)/5 = 1.4
- > Edge density d=4/(5*4/2) = 0.4

Examples: edge density

	nodes	edges	density [%]
Autobahnen	1 168	2 486	0.18
Internet	6 524	29 629	0.0696
	225 722	4 407 405	
www	325 729	1 497 135	0.0014
Power Grid	4 677	12 500	0.0572
metabolic	422	1 972	1.3
C. Elegans	202	2 540	6.3
(partial netwo	rk)		
macaque	73	835	16

sparse network (density ~ 1%)

dense network (density > 5%)

How can the fibre tract network structure be examined?

Tract tracing with dyes*

PHA-L: Phaseolus vulgaris-leucoagglutinin

Anterograde: soma → synapse

Retrograde: soma ← synapse

^{*} Horseradish peroxidase (HRP) method; fluorescent microspheres; Phaseolus vulgarisleucoagglutinin (PHA-L) method; Fluoro-Gold; Cholera B-toxin; Dil; tritiated amino acids

Diffusion Tensor Imaging (DTI)

Topological network organisation

Archetypes of complex networks

Note: real complex networks show a combination of these types!

Kaiser (2011) Neuroimage

It's a small world

Nodes: individuals

Links: social relationship

S. Milgram. *Psychology Today* (1967)

Austin Powers

A Few

Let's make it legal

Wild Things

What Price Glory

Kevin Bacon

Network properties

Clustering coefficient

Neighbours = nodes that are directly connected

local clustering coefficient C_{local} = average connectivity between neighbours C_{local} = 1 -> all neighbours are connected

C: global clustering coefficient (average over all nodes)

Characteristic path length

Shortest path between nodes i and j: L_{ij} = minimum number of connections to cross to go from one node to the other node

Characteristic path length L = average of shortest path lengths for all pairs of nodes

 $C_A = 4/10 = 0.4$

Shortest path lengths:

A -> C: 2

A -> E : 1

Small-world networks

Clustering coefficient is higher than in random networks (e.g. 40% compared to 15% for the macaque monkey)

Characteristic Path Length is comparable to random networks

Small-world

Watts & Strogatz, Nature, 1998

Modular small-world connectivity

Small-world

Neighbours are well connected; short characteristic path length (~2)

Modular

Clusters: relatively more connections within the cluster than between clusters

Hierarchy

Sequential

Topological

Temporal

Spatial

Kaiser et al. (2010) Frontiers in Neuroinformatics Hilgetag & Kaiser PLoS Comput. Biol. (in preparation)

Summary

2. Finding structural fibre tract connectivity:

- Diffusion tensor imaging

- Tract tracing

3. Topological properties:

- multiple clusters/ modularity
- small-world: path lengths and local neighbourhood clustering

1. Types of connections:

- Structural
- Functional
- Effective

Further readings

Jeff Hawkins with Sandra Blakeslee.

On Intelligence. Henry Holt and Company, 2004

Olaf Sporns. *Networks of the Brain*. MIT Press, 2010

Duncan J. Watts. Six Degrees: The Science of a Connected Age. Norton & Company, 2004

Sporns, Chialvo, Kaiser, Hilgetag. Trends in Cognitive Sciences (September 2004) www.biological-networks.org