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Brain connectivity
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Hilgetag & Kaiser (2004) Neuroinformatics 2: 353

Types of Brain Connectivity
Structural, functional, effective

Small-world
Neighborhood clustering
Shortest path length

Spatial
preference for short

connections but more long-
distance connections than
expected

Structure->Function
Network changes lead to
cognitive deficits
(Alzheimer’s disease, 1Q)




Qutline

Microscale
« Centrality measures

Mesoscale
 Motifs
 Clusters

Macroscale

* Degree distributions:
Random and Scale-free networks

Studying network robustness



Centrality measures



Node betweenness

* Node betweenness:
number of shortest paths that go through one node




Edge betweenness

« Edge betweenness:
number of shortest paths that go through one edge

High edge
betweenness

Low edge
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ogiweennesss




Centrality measure example
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Node 8 has the highest node betweenness
Edge 8-9 has the highest edge betweenness



Motifs



Motifs

|ldea: determine building blocks of
networks.

id12 id14 id36

Hope: structural building blocks
correspond to functional units.

Pattern: possible connection
configuration for a k-node subgraph

(see list of all 3-node configurations)

List of all 3-node

Motif: pattern that occurs significantly patterns

more often than for rewired
benchmark networks

(same number of nodes and edges
and same degree distribution)

* Milo et al. (2002) Science;
http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html



Motif detection — algorithm

Network name: network exmp.txt

Network type: Directed

Num of Nodes: 16 Num of Edges: 19

Num of Nodes with edges: 16

Maximal out degree (out-hub) : 3

Maximal in degree (in-hub) : 3

Roots num: 4 Leaves num: 4

Single Edges num: 19 Mutual Edges num: 0

Motif size searched 3
Total number of 3-node subgraphs : 21
Number of random networks generated : 100
Random networks generation method: Switches
Num of Switches range: 100.0-200.0,

Success switches Ratio:0.652+0.01

The following motifs were found:

Criteria taken : Nreal Zscore > 2.00
Pval ignored (due to =mall number of random

networks)
Mfactor = 1.10
Appearances Random . _
in the real networks: URiguenses = 4 Uniqueness Concentration
network mean+- SD X103
Full likt includes 1 motifs
MOT NREAL N D NREAL NREAL UNIQ \CREAL
ID STATS ZSCORE PVAL VAL [MILI]
38 5 0.640.6 6.93 0.000 4 238.10
011 Motif
001 < Adjacency
000 Matrix




Motif detection — results

transcription neuron synaptic ecological
network connection network food web

X—»Y represents X Y
e r>/®\r>/® C=C=

gene x geney

Network Nodes  Edges | Meal Mand=SD  Zscore | Mreal MNrand=SD  Zscore | Mreal Nrand=SD  Zscore
Gene regulation X Feed- X Y Bi-fan
(transcription) \ forward
Y loop
\ Z W
Z
E. coli 424 519 40 73 10 203 47+12 13
S. cerevisiae® 685 1,052 70 114 14 1812 30040 41
Neurons X Feed- X Y Bi-fan X Bi-
V forward 2 parallel
Y loo Y Z
W/ P Z W N K
7 W
C. eleganst 252 509 125 9010 3.7 127 55=+13 5.3 227 3510 20

Milo et al. Science, 2002



Motif detection — problems

Advantages:
- Identify special network patterns which might represent functional modules

Disadvantages:

- Slow for large networks and

unfeasible for large (e.g. 5-node) motifs

(#patterns: 3-node — 13; 4-node — 199; 5-node: 9364; 6-node - 1,530,843)
- Rewired benchmark networks do not retain clusters;

most patterns become insignificant for clustered benchmark networks*

* Kaiser (2011) Neuroimage



Clusters (or Modules or Communities)

13



Clusters

Clusters: nodes within a cluster tend to connect
to nodes in the same cluster but are less likely
to connect to nodes in other clusters

Quantitative measure: modularity Q
(Newman & Girvan, Physical Review E, 2004)

important terms:
hierarchical (cluster, sub-cluster, ...)

overlapping or non-overlapping
(one node can only be member of one cluster)

predefined number of clusters
(e.g. k-means algorithm)

Potential time problem for large networks, O(kN)
Hundreds of algorithms for cluster detection!



Cluster detection — example

Non-hierarchical, overlapping

Genetic algorithm Procedure

Random starting configurations

 Evolution:
 Mutation : Area relocation
. « Evaluation . Cost function
« Have as few as possible _ _
connections between them * Selection : Threshold
Validation

« Have as few as possible absent
connections within them

Hilgetag et al. (2000) Phil. Trans. Roy. Soc. Lond. B.



Cluster detection

SENSORY-
MOTOR

FRONTO-

LIMBIC

JDITORY

VISUAL

L_|

Example:

Cat cortical network

Black:
same cluster

Graylevel:
Ambiguous cases

Hilgetag et al. (2000) Phil Trans R Soc 355: 91



Random graphs



Preliminary: Degree distributions
|NORMAL |TR1ANGLE |BET.0. I{@

Degree distributions as

GAMMA, GAMMA, B
|!j LEFT |RlGHTf? |’§E§KCT);\JAL IPO|IISSON

Theoretical (known properties):

P(k) is the probability that a P(K) ox
node with k edges exists in the o
network (probability distribution) 0.12

0.06

0.04

T IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Node degree k

Numerical (real-world network):
use the number of occurrences
of a node (histogram)

Degree distribution



Random graphs

« often called Erd6s—Rényi* random graphs

* (Generation:
For each potential edge
(adjacency matrix element outside the diagonal),

establish an edge /0
(set that element of the adjacency matrix to 1) i
with probability p A= |

KO

*Erdés, P.; Rényi, A. (1959). Publicationes Mathematicae 6: 290-297.

O = D

p_AOy_Ap_A




Properties of random graphs

« Edge density = p o n— 1
« Binomial degree distribution (k) = 2
(histogram of node degrees)

o

Can be approximated as ) _ ok
Poisson distribution (ki A k! A=n’p
-> exponential tail 006 | _. .
(networks are therefore 0o . .
sometimes called . .

exponential networks) ““__..' e



Scale-free networks



N

Power-law function:

f(x) = x@ = 1/xa

K Scale-free = no characteristic scale

Hub =

highly-connected node

(potentially important

for the network)



Is your network scale-free?
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Examples for biological scale-free networks

35 ~
b o 500 " O Macaque
' ks £ g 307 B Random
2} . - S 251
-__:' \ _ E .-.. ‘AA.‘ 8 20 T
é —.’. ! g”z; ...’ ™, ° 800 g 151
E;; -6} \ 3 i .\ N Degree k g 10 1
= A c . . | QA} g 5
2 ahd o 7
B N bl o Lom.
- 0 5 10 15 20 25 30 35 40 45
! 10 00
c K+ ki.' Degree k degree
Protein-protein Correlation network between
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Jeong et al., Nature, 2001 Eguiluz et al., Phys Rev Lett, 2005 Kaiser et al., Eur J Neurosci, 2007
Sporns et al., Trends Cogn Sci, 2004



Robustness



Neural robustness against network damage (lesions)

Rats: Spinal chord injury Human: Compensation for loss
of one hemisphere at age 11

large recovery possible with as
few as 5% of remaining intact
fibers

You et al., 2003



Cellular robustness against damage (gene knockouts)

 Mutations can be
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* A. Wagner. Robustness against mutations in genetic networks of yeast.
Nature Genetics, 24, 355-361 (2000).



Measures of structural integrity

How is the global topology of the network affected?

|dea: Changes in structural properties might indicate functional
changes (like lower performance of the system)

Structural measure Potential functional impact
1 All-pairs shortest path longer transmission time

Alzheimer

N Reachability IFragmentation occurrence of isolated parts (components)

| Clustering coefficient less interaction within modules
Schizophrenia



Example: fragmentation
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f: fraction of removed nodes
f.: fraction where the network breaks into small fragments

Albert R, Jeong H, Barabasi AL (2000) Nature 406: 378-382
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cumulated occurences

Example: simulated brain lesions

Is the brain similar to a scale-free network?

O Macaque
B Random

Additional hubs
in the extended
network of the cat

Hipp
Amyg

1. HH“MH s
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degree




Sequential removal of brain areas

Small-world Network, Node elimination n=73

Macaque Network, Area eimination Scale-free Network, Area elimination
/'//_ o ‘
/'/ ."\_
VA N
\\ 0 0.5 1
0 0 : R fraction of deleted nodes,
0 02 04 06 08 1 0 02 04 06 08 1 Random Network, Node elimination n=73
fraction of deleted nodes fraction of deleted nodes Al
3t
randomly = irrespective of degree &
< ~ \

targeted = highly-connected nodes first N
0 : .
0 0.5 1

fraction of deleted nodes

Kaiser et al. (2007) European Journal of Neuroscience 25:3185-3192
31



Where do ‘hubs’ come from?

Not from preferential attachment...
During individual development, early-established nodes have more time to

0.05¢ a\ Frontal, <___——-—-—-__' Parietal,

Temporal, _____———-——_"' Occipital
Sensorimotor
.
0.025 f
- -/// //f | -,,..\-\_- ‘\\\‘..
Archicortex,

0
0.5 1
Paleocortex

relative time

establish connections:

Ptemp

C. elegans network development: Varier & Kaiser (2011) PLoS Comput Biol

Nisbach & Kaiser (2007) Eur Phys J B
Kaiser et al. (2007) European Journal of Neuroscience 25:3185-3192



Summary

7. Mesoscale:
- Motifs
- Clusters/Modules

8. Macroscale:

- Degree distribution
Random networks
Scale-free networks

- Small-world networks

- Hierarchical networks

6. Microscale:

- Centrality 9. Robustness:
- Node degree - Change of network properties
- Local clustering coefficient after edge or node removal

- simulated brain lesions

33



Further readings

Costa et al. Characterization of Complex Networks
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2
Luciano da Fontoura Costa

Bullmore & Sporns. Complex Brain Networks
Nature Reviews Neuroscience, 2009

Ed Bullmore Olaf Sporns

Kaiser et al. Simulated Brain Lesions
(brain as scale-free network)
European Journal of Neuroscience, 2007

Malcolm Young

Alstott et al. Modeling the impact of lesions in the human brain
PLoS Computational Biology, 2009




