

A Tutorial in Connectome Analysis (III): Topological and Spatial Features of Brain Networks

Dr Marcus Kaiser

School of Computing Science / Institute of Neuroscience Newcastle University United Kingdom

WCU Dept of Brain & Cognitive Sciences Seoul National University South Korea http://bcs.snu.ac.kr/

http://www.biological-networks.org

<u>Types of Brain Connectivity</u> Structural, functional, effective

<u>Small-world</u> Neighborhood clustering Shortest path length

Spatial

preference for short connections but more longdistance connections than expected

<u>Structure->Function</u> Network changes lead to cognitive deficits (Alzheimer's disease, IQ)

Outline

Microscale (one component)

• Centrality measures

Mesoscale (several components)

- Motifs
- Clusters

Macroscale (all components)

 Degree distributions: Random and Scale-free networks

Studying network robustness

Centrality measures

Node betweenness

 Node betweenness: number of shortest paths that go through one node

Edge betweenness

 Edge betweenness: number of shortest paths that go through one edge

High edge betweenness

Low edge betweenness

Centrality measure example

Node 8 has the highest node betweenness Edge 8-9 has the highest edge betweenness

Motifs

Motifs

Idea: determine building blocks of networks.

Hope: structural building blocks correspond to functional units.

Pattern: possible connection configuration for a k-node subgraph (see list of all 3-node configurations)

Motif: pattern that occurs significantly more often than for rewired benchmark networks (same number of nodes and edges and same degree distribution)

* Milo et al. (2002) Science; http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html

Motif detection – algorithm

Motif detection – results

Network	Nodes	Edges	Nreal	$N_{\rm rand} \pm {\rm SD}$	Z score	Nreal	$N_{rand} \pm SD$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score
Gene regulation (transcription)			$ \begin{vmatrix} \mathbf{x} \\ \mathbf{\psi} \\ \mathbf{y} \\ \mathbf{z} \end{vmatrix} $		Feed- forward loop			Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons			$ \begin{vmatrix} \mathbf{x} \\ \mathbf{\psi} \\ \mathbf{\psi} \\ \mathbf{\psi} \\ \mathbf{z} \end{vmatrix} $		Feed- forward loop			Bi-fan	$ \begin{array}{c} \swarrow^{\mathbf{X}} & \mathfrak{A} \\ \mathbf{Y}_{\mathbf{A}} & \ \mathcal{L}^{\mathbf{Z}} \\ \mathbf{W} \\ \end{array} $		Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20

Milo et al. Science, 2002

Motif detection – problems

Advantages:

- Identify special network patterns which *might* represent functional modules

Disadvantages:

- Slow for large networks and unfeasible for large (e.g. 5-node) motifs (#patterns: 3-node – 13; 4-node – 199; 5-node: 9364; 6-node - 1,530,843)
- Rewired benchmark networks do not retain *clusters*; most patterns become insignificant for clustered benchmark networks*

* Kaiser (2011) Neuroimage

Clusters (or Modules or Communities)

Clusters

Clusters: nodes within a cluster tend to connect to nodes in the same cluster but are less likely to connect to nodes in other clusters

Quantitative measure: modularity Q (Newman & Girvan, Physical Review E, 2004)

important terms:

hierarchical (cluster, sub-cluster, ...)
overlapping or non-overlapping

(one node can only be member of one cluster)

predefined number of clusters

(e.g. k-means algorithm)

Potential time problem for large networks, O(k^N) Hundreds of algorithms for cluster detection!

Cluster detection – example

Non-hierarchical, overlapping

Genetic algorithm

15

- Have as few as possible connections *between* them
- Have as few as possible absent connections *within* them

Hilgetag et al. (2000) Phil. Trans. Roy. Soc. Lond. B.

- Random starting configurations
- Evolution:

Procedure

- Mutation
- Evaluation :
- Selection
- Validation

- : Area relocation
- : Cost function
- : Threshold

Cluster detection

Hilgetag et al. (2000) Phil Trans R Soc 355: 91

Random graphs

Preliminary: Degree distributions

Degree distributions

Theoretical (known properties): P(k) is the probability that a node with *k* edges exists in the network (probability distribution)

Numerical (real-world network): use the number of occurrences of a node (histogram)

Random graphs

- often called Erdős–Rényi* random graphs
- Generation: For each potential edge (adjacency matrix element outside the diagonal), establish an edge (set that element of the adjacency matrix to 1) with probability p $A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

*Erdős, P.; Rényi, A. (1959). Publicationes Mathematicae 6: 290–297.

Properties of random graphs

- Edge density = p
- Binomial *degree distribution* (histogram of node degrees)

Can be approximated as Poisson distribution

-> exponential *tail* (networks are therefore sometimes called *exponential networks*)

Scale-free networks

Power-law degree distribution

Power-law function:

$$f(x) = x^{-a} = 1/x^a$$

Scale-free = no characteristic scale

Barabasi & Albert, Science, 1999

Airline network

Hub =

highly-connected node

(potentially important for the network)

Liljeros, Nature, 2001

Examples for biological scale-free networks

Protein-protein interaction network Correlation network between cortical tissue (fMRI voxels)

Cortical fibre tract network?

Jeong et al., Nature, 2001 Eguiluz et al., Phys Rev Lett, 2005 Kaiser et al., Eur J Neurosci, 2007 Sporns et al., Trends Cogn Sci, 2004

Robustness

Neural robustness against network damage (lesions)

Rats: Spinal chord injury

large recovery possible with as few as 5% of remaining intact fibers

Human: Compensation for loss of one hemisphere at age 11

You et al., 2003

Cellular robustness against damage (gene knockouts)

- Mutations can be compensated by gene copies or alternative pathways*:
 ~70% of single-gene knockouts are non-lethal
- The metabolism can adjust to changes in the environment (e.g. switch between aerob and anaerob metabolism)

* A. Wagner. Robustness against mutations in genetic networks of yeast. *Nature Genetics*, 24, 355-361 (2000).

Measures of structural integrity

How is the global topology of the network affected? Idea: Changes in *structural* properties might indicate *functional* changes (like lower performance of the system)

Example: fragmentation

f: fraction of removed nodes

f_c: fraction where the network breaks into small fragments

Albert R, Jeong H, Barabasi AL (2000) Nature 406: 378–382

Example: simulated brain lesions

Is the brain similar to a scale-free network?

Sequential removal of brain areas

Kaiser et al. (2007) European Journal of Neuroscience 25:3185-3192

Where do 'hubs' come from?

Not from preferential attachment...

During individual development, early-established nodes have more time to establish connections:

C. elegans network development: Varier & Kaiser (2011) PLoS Comput Biol Nisbach & Kaiser (2007) *Eur Phys J B* Kaiser et al. (2007) *European Journal of Neuroscience* 25:3185-3192

Summary

7. Mesoscale:

- Motifs

- Clusters/Modules

6. Microscale:

- Centrality
- Node degree
- Local clustering coefficient

8. Macroscale:

- Degree distribution
 Random networks
 Scale-free networks
- Small-world networks
- Hierarchical networks

9. Robustness:

- Change of network properties after edge or node removal
- simulated brain lesions

Further readings

Advances in Physics, 2006

Costa et al. Characterization of Complex Networks

Luciano da Fontoura Costa

Ed Bullmore

Malcolm Young

Bullmore & Sporns. <u>Complex Brain Networks</u> Nature Reviews Neuroscience, 2009

Olaf Sporns

Kaiser et al. <u>Simulated Brain Lesions</u> (brain as scale-free network) *European Journal of Neuroscience, 2007*

Alstott et al. Modeling the impact of lesions in the human brain PLoS Computational Biology, 2009